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Abstract

The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within
Earth’s core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects
might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative
interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost
core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields
an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary

Ž .conditions are required. To concentrate shear induced dissipation near the core–mantle boundary, these are taken to be: i
Ž .no-slip at the core–mantle interface; ii geomagnetically estimated bulk westward flow at the base of the core–mantle

Ž .boundary layer; iii no-slip at the inner–outer core interface; and, to describe magnetic locking of the inner core to the deep
Ž .outer core, iv hydrodynamically stress-free at the inner–outer core boundary. By boldly assuming the axial core angular

momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most
1.58ryear. Published by Elsevier Science B.V.
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1. Introduction

The westward drift of certain features in the
geomagnetic field across Earth’s surface at a few
tenths of a degree per year has long been used to
suggest westward drift of Earth’s magnetized core
Ž .Halley, 1692 . To the extent that the field is frozen
into an electrically conducting fluid outer core, west-
ward drift indicates westward flow near the top of
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the core. Bulk westward flow at about 0.128ryear
emerges from somewhat more detailed inversions of

Žsecular geomagnetic change see, e.g., Voorhies,
.1995 ; however, this rate can be reduced by diffu-

sion, hence slipping, of the field through the imper-
Ž .fectly conducting fluid see, e.g., Voorhies, 1993 .

Such westward flow poses an interesting problem for
those who suspect that, during the course of geologic
time, Earth’s core and mantle have relaxed to a state
wherein the angular momentum of the core is quite
close to that of a rigid body rotating with the angular

Žvelocity of the mantle. This apart from differential
spin up due to inner core solidification, differential
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tidal spin down, differential precession, and various
.oscillations.

A slight convective leveling of the planetary az-
imuthal momentum gradient still seems to offer the
most facile explanation of westward drift. Compared
with a non-convecting, uniformly rotating state,
buoyant, low azimuthal momentum fluid at depth
floats towards the upper surface and drifts west;
dense, high azimuthal momentum fluid above sinks
towards the lower surface and drifts east; and the
azimuthal momentum gradient is reduced. The reduc-
tion is arguably very small for several reasons: the
convective motions are feeble, strongly constrained
by the rotation itself, and may be largely confined to
spirals on surfaces of constant planetary momentum.
Slight departures from motion on such surfaces may
nonetheless be realized, notably if they increase con-
vective efficiency by decreasing dissipation or, per-
haps for thermo-compositional magneto-convection,
by distributing Ohmic and viscous dissipation so as
to aid core cooling. Westward drift has thus long
provided a reason to consider seriously the convec-
tive outer core geodynamo hypothesis, whereby con-
vective fluid motions maintain the aperiodically re-
versing geomagnetic main field against magnetic
diffusion and Ohmic dissipation.

This facile explanation of westward drift clearly
requires eastward flow of the fluid at depth in the
outer core. If the total angular momentum of the core
is quite close to that of a rigid body of identical
inertial moment rotating with the mantle, then the
speed of the eastward flow at depth will exceed that
of the westward flow above so long as the geometric
effects of reduced moment arm and volume at depth
dominate the increased density of quasi-hydrostatic
compression.

The foregoing argument for eastward flow at
depth has long been obvious to students of the
secular variation. It is now clear that tight magnetic
coupling of eastward flow near the base of the outer
core to the similarly high conductivity solid inner
core would tend to spin up the inner core. Indeed,
deviation from co-rotation shears the magnetic field
lines that thread the inner core boundary and are thus
embedded in both liquid and solid conductors. Such
shear induces electric current and restoring Lorentz
torques that tend to return the system towards a
magnetically locked equilibrium—perhaps after sev-

Ž .eral resistively damped oscillations Gubbins, 1981 .
The essential geophysics was elucidated by Glatz-

Ž .maier and Roberts 1995a,b, 1996 , via numerical
simulation of the core geodynamo, and led to their
celebrated prediction of an eastwardly drifting inner
core.

Seismologic substantiation of this prediction by
Ž . Ž .Song and Richards 1996 and Su et al. 1996

suggests considerable uncertainty as to the amplitude
of eastward inner core drift. The former obtain about

Ž1.18ryear; the latter obtain about 38ryear 2.27"

0.908ryear, 3.02"0.428ryear and 3.288ryear de-
.pending upon the details of the inversion . Creager

Ž .1997 obtains a lower rate of about 0.258ryear,
Ž . Ž .while Souriau et al. 1997 and Souriau 1998 ques-

tion the seismologic detection of inner core rotation
itself. This paper shows how eastward drift of a solid
inner core can be simply, albeit not unambiguously,
calculated from geomagnetic westward drift without
recourse to either numerical simulation or models of
inner core acoustic anisotropy.

2. Simple model and example

Consider a planet rotating with sidereal angular
Ž .velocity V r,t and mass density equal to marginally

Ž .stable reference density r r plus small perturbation
Ž . Ž < < .dr r,t drrr <1 . For simplicity, position r is

measured in centered spherical polar coordinates
Ž .radius r, colatitude u and east longitude f rotating
with a rigid mantle at uniform angular velocity V ẑo

ˆŽ .z'rcosuyu r sin u . This filters out secular tidalˆ ˆ
despin, polar wander, precession, nutation and
decadal and higher frequency fluctuations in the
angular velocity of the mantling solid, which fall
outside the focus of this paper.

The planetary rotational velocity V z=r is east-ˆo
ˆward V r sin uf. The planetary momentum densityo

ˆM is eastward M , is frV r sin u , and is thef o

planetary azimuthal momentum of a material parcel
of unit volume. Clearly, M tends to increase withf

distance away from the rotation axis, s'rsinu . For
a small planetoid of homogeneous mass density r ,o

the planetary momentum gradient = M is uniformlyf

steep r V s. For a self-gravitating compressibleˆo o

planet,

= M srV sqs=rrr . 1Ž . Ž .ˆf o
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If the rotation is not too fast, then a roughly
spheroidal planet remains nearly spherical, the strati-

Ž .fication is nearly radial r r , =rfrE r, and E r-ˆ r r

0. If the density scale height is not too small
Ž < <y1 .r E r )s , then = M is not vastly differentr f

than for homogeneous density; however, surfaces of
constant planetary momentum flare away from the

< <rotation axis as distance from the equatorial plane z
increases. Such surfaces are more akin to hyper-
boloids of revolution than right circular cylinders.
For terrestrial example, calculated from the seismo-

Ž .logic density model of Kennet et al. 1995 , the
constant M surface tangent to the equator of Earth’sf

solid inner core intercepts the fluid outer core–man-
tle boundary at colatitude 25.48—some 300 km south
of the right circular tangent cylinder intercept at
20.58.

To avoid convective leveling of the planetary
momentum gradient in a thick, rapidly rotating,
roughly spherical annulus such as Earth’s electrically
conducting liquid outer core, one need only arrange
Ž .a perfect exchange of planetary momentum be-

Ž .tween rising and falling fluid; b perfect confine-
ment of convective motions to surfaces of constant

Ž .planetary momentum; or c perfect exchange of
planetary momentum between fluid parcels moving
onto and parcels moving away from each surface of

Ž .constant planetary momentum. Although case c is
thought to be an excellent approximation, it seems
unlikely that any of these conditions could be per-
fectly satisfied in a real planet.

Core angular momentum anomaly. The angular
momentum density in the core is the sum of plane-
tary and deviatoric portions. The planetary angular

ˆŽmomentum density is northward r = fM sf

ˆ 2 .yurV r sin u . The deviatoric angular momentumo

density is due to perturbation density and relative
Ž .velocity z r,t . The total angular momentum of the

core is the volume integral

ˆLs r=frV r sin uHHH o
CV

ˆqr= rzqdrzqfdrV r sin u dV 2aŽ .Ž .o

L'L qD L ,p

Ž .where CV denotes core volume. If r r is axisym-
Ž .metric r r,u , then the planetary angular momen-

tum of the core L is parallel to the referencep

rotation axis. The deviatoric angular momentum,

ˆD L' r= rzqdrzqfdrV r sin u dVŽ .HHH o
CV

2bŽ .

ˆD Lf r= rzqfdrV r sin u dV , 2cŽ .Ž .HHH o
CV

is just the core angular momentum anomaly which
Ž < < < <.some think small D L < L .p

Does the Taylor–Proudman theorem inhibit leÕel-
ing? To find out, partition the mass transport equa-

Ž .tion into main =Przs0 and fluctuating parts. The
curl of an approximate balance between the Coriolis

Ž .force density 2V z=rz and hydrostatically un-ˆo
Žcompensated scaloidal force densities such as per-

.turbation pressure gives the Proudman–Taylor con-
Ž . Žstraint 2V zP= rzf0 see, e.g., Gubbins andˆo
.Roberts, 1987 . The relative momentum density rz

does not vary much along the direction of the rota-
tion axis; yet motions orthogonal to the rotation axis
are allowed and might slightly level = M . Suchf

leveling would appear as a nonzero mean gradient in
Žthe deviatoric azimuthal momentum r Õ qdr Õ qf f

.drV rsinu rather than a change in = M itself.o f

Ž .Purely azimuthal flow Õ r satisfies the con-f

straint when relative momentum r Õ varies onlyf

Ž Ž . w Ž .xy1w Ž . xwith s i.e., Õ r f r r f rsinu qK wheref o
.K is a constant and f is a function of s alone . Ato

fixed s, the decrease in r with radius, hence dis-
< <tance z from the equatorial plane, can be compen-

sated by faster flow. Surfaces of constant Õ thusf

< <tend to curve towards the rotation axis as z in-
creases. Such curvature resembles a spherical vortex
modulating azimuthal flow that would otherwise be
invariant along more familiar co-axial right circular
cylinders. The effect could be quite large for motions
spanning multiple density scale heights, as in a
stellar or giant planetary convection zone, but the
mass density contrast across Earth’s outer core is
only 22%. The notion of a spherical vortex persists
because Taylor–Proudman conditions are not fully
met by magneto-convection of a viscous fluid; be-
cause smaller scale motions might excite and main-
tain such a vortex; because of the shape of the
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bounding solids; and because of geomagnetic west-
ward drift.

2.1. Simple spherical Õortex and boundary condi-
tions

As in many models, inner–outer core and core–
mantle transition zones are here approximated by
sharp material interfaces. The solid inner core is
approximated by a rigid ball of radius d, the fluid
outer core by a spherical annulus of outer radius c
and inner radius d, and the reference density by

Ž .laterally homogeneous r r . For the bulk eastward
or westward flows considered here, spherical shells
rotate as if rigid bodies; therefore, attention is di-
rected towards the spherical vortex

ˆ ˆV r sw r sin ufsv r r sin uf , 3aŽ . Ž . Ž . Ž .o

Ž .where w r is the equatorial amplitude of bulko
Ž .eastward flow, v r is the perturbation angular ve-

locity or ‘eastward drift’, and the relative vorticity is
Ž . Ž Ž ..2v r z. The spherical vortex Eq. 3a is parti-ˆ

tioned into frozen field and diffusive portions,

v r sv r qv r , 3bŽ . Ž . Ž . Ž .B h

where v represents geomagnetic drift in theB
Ž .frozen-flux approximation and v r denotes diffu-h

< <sive slip. The radially varying ratio vrv indicatesh

the relative importance of advection to diffusion in
the vortex.

Ž .The hypothetical kinematic model Eq. 3a is not
intended to satisfy conditions needed for the
Taylor–Proudman theorem, the rigidized sphere

Ž .model of differential precession Vanyo, 1984, 1991 ,
Ža dynamical simulation Glatzmaier and Roberts,

. Ž1995a,b, 1996 , or a thermal wind model Aurnou et
.al., 1996, 1998 . The rigidized sphere model would

correspond to a homogeneous spherical vortex be-
Ž Ž y. .neath a boundary layer v rFc f0.18ryear .

Whether or not an inhomogeneous spherical vortex
is excited and maintained by smaller scale, possibly

Žturbulent, convective andror wave motions usz

.yV , it conforms to the boundaries more naturally
than a cylindrical vortex and thus eases discussion of
boundary conditions.

Although the outer core might slip past the mantle
almost as easily as mercury under leaded glass,
radius cy is used to denote the base of a thin viscous

boundary layer separating a free-streaming fluid core
from a rigid mantle. At the edge of the free-stream,

v cy sv cy qv cyŽ . Ž . Ž .B h

v cy sy0.11578ryear. 3cŽ . Ž .B

The illustrative numerical value is the 1945–1980
Žmean from the preferred solution of Voorhies 1995;

.the value y0.1218ryear was for 1967.5 . Inversions
for steady flow and steady flux diffusion suggest

< Ž y. < Ž y.some eastward diffusive slip 0.5 v c Gv cB h

G0; steady, surfically geostrophic flow inversions
Ž y.suggest a westward diffusive slip v c F0 andh

Ž .slower westward magnetic drift Voorhies, 1993 .
The maximum westward flow used below is the

Ž y. Ž y.frozen-flux extreme, yv c syv c .B

For a rigid mantle, the hydrodynamic no-slip
core–mantle interface condition is:

v rGc s0. 3dŽ . Ž .
For a rigid inner core, the hydrodynamic no-slip
inner core boundary condition is:

v rFd sv d s lim v dqd . 3eŽ . Ž . Ž . Ž .
qd™0

Viscous and magnetic locking of a rigid inner core
to fluid at and near the base of the outer core
suggest little or no slip, and little or no shear, at the
inner boundary. At the desired equilibrium, neither
advection nor shear of magnetic field lines threading
the inner core excite restoring Lorentz torques. The
no-shear condition amounts to the hydrodynamic
stress-free inner boundary condition,

v
X d s0, 3fŽ . Ž .

where v
X denotes E v. The combined no-sliprno-r

Ž y. Ž . Ž q.stress conditions yield v d sv d sv d . The
Ž .intent of Eq. 3f is to filter out, not rule-out, oscilla-

tions about, and secular trends in, the desired equi-
Ž .librium. Granting conditions 3c–f , diffusively un-
Ž y. Ž y.compensated westward drift v c fv c offersB

kinematic driving for a nontrivial spherical vortex.
Gravitational locking of the inner core to the mantle
Ž . Ž .Buffett, 1997 would further require v d to be
zero.

2.2. Axial angular momentum anomaly for small
density perturbations

Ž .For spherical vortex 3a , the integrand in Eq.
Ž .2c for D L would vanish everywhere if drrrz



( )C.V. VoorhiesrPhysics of the Earth and Planetary Interiors 112 1999 111–123 115

Ž .were equal to yv r rV . In the frozen-flux limit ofo
Ž .Eq. 3c , such detailed balance would have

Ž y. Ž y. y7
dr c rr c be 8.8=10 . Provided the volume
integral of dr vanishes, this density surplus above
would imply a density deficit, hence eastward flow,
below. For example, if surplus mass in the shell of
radius cy and thickness dr were balanced by a mass
deficit in an equally thin shell of radius dq, then

Ž q. Ž .2 Ž y.dr d would be y crd dr c , or y8.2
Ž y.dr c ; moreover, with ´'drc,

v dq syV dr dq rr dqŽ . Ž . Ž .o

2 y qw xsV crd dr c rr dŽ . Ž .o

syv cy ´y2r cy rr dq 4Ž . Ž . Ž . Ž .
Ž y. Žwould be y6.67 v c using ´s0.3499 and

Ž y. Ž q. .r c rr d s0.8168 from Kennet et al., 1995 .o o

The corresponding eastward drift of a magnetically
locked inner core would be about 0.88ryear.

If buoyancy and Coriolis force densities are the
same order of magnitude in a convecting outer core,

< < y9then drrrf 2V =Õrg f4=10 . The densityo

perturbation needed for detailed balance, being up to
200 times this value, seems quite unstable. Perturba-
tion angular momentum density shall thus be omitted
compared with relative angular momentum density
Ž .r=rz . The axial angular momentum anomaly
Ž Ž .. Ž Ž ..Eq. 2c for spherical vortex Eq. 3a thus reduces
to

p c2p

D L s r sin u r r w r sinuŽ . Ž .H H Hz
0 0 0

=r 2 sin ud rdu df 5aŽ .
c

4
D L s 8pr3 r r v r r d r . 5bŽ . Ž . Ž . Ž .Hz

0

Ž .Although r r has long been inferred seismologi-
Ž .cally with great confidence, v r is needed to evalu-

Ž .ate D L . From Eq. 3c , the key supposition D L s0,z z

and several arbitrary differential rotation profiles and
boundary conditions, I calculated inner core drifts
ranging from 0.28ryear to 38ryear. The agreement
with the range of seismologic estimates appears
wholly fortuitous. The following sample reveals the
ambiguities and shortcomings of such ad hoc calcu-
lations, yet suggests a more satisfactory approach.

2.3. A parabolic shot at inner core rotation

Ž .If D L from Eq. 5b were steady as well asz

small, then the hydrodynamic stress-free condition at
the base of the viscous sub-layer,

y1 < y
X yrE r V sr sin uv c s0, 6aŽ . Ž .Ž . cr f

Ž .seems a fair substitute for Eq. 3d because it filters
out viscous exchange of angular momentum between

Ž . Ž .the mantle and the main-stream. Eqs. 3c and 6a
together give a free-slip main-stream boundary con-
dition.

Ž .Of the infinity of profiles that satisfy Eqs. 3c ,
Ž . Ž .3e and 6a , consider the simple quadratic form:

2cyr
y yv dFrFc sv c yŽ . Ž . ž /cyd

= yv c yv d . 6bŽ . Ž . Ž .
Ž .Vastly more complicated forms for v r with much

more shear and curvature tend to increase viscous
dissipation and diffuse away more rapidly. By the
well-known omega-effect, they also induce magnetic
fields with much more shear and curvature which, in
turn, tend to increase Ohmic dissipation and diffuse
away more rapidly. Such complicated, seemingly

Ž .transient, forms for v r are not selected because the
excess dissipation in the body of the outer core
interferes with the task at hand: cooling the core over
geologic time by smaller scale thermo-compositional

Žconvective motions. This is formalized in Section
.3.
For uniform density throughout the core, substitu-

Ž . Ž .tion of Eq. 6b into Eq. 5b and setting the result-
ing integral for D L to zero yields, after some alge-z

bra,

5 )1y´ yQ
v d syv c , 7aŽ . Ž . Ž .5 )´ qQ

Ž .where ´' drc s0.3499 as before and

2
) 5 6 7wQ ' 1y´ 1r21y´ q5´ r3y5´ r7Ž . . .

s0.1064. 7bŽ .
Ž .The eastward drift of the inner core from Eqs. 7a

Ž .and 7b is

v rFdq sy7.96v cy s0.928ryear, 7cŽ . Ž . Ž .
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Ž y. Ž y.where the last step sets v c to v c above. InB

this example, the solid inner core reduces the jump
in v across the outer core; indeed, if ´ were zero,

Ž . Ž y.then v 0 would be y20 v c .
When uniform core density is replaced with bilin-

ear density variation across the outer core and across
Ž .the inner core, Eq. 6b and the assumption of zero

Ž . Ž .D L yield a modified version of Eqs. 7a , 7b andz
Ž .7c that reduces to

v rFdq sy7.383v cy s0.858ryear 7dŽ . Ž . Ž .
Ž .for the boundary densities of Kennet et al. 1995 .

Increased density at depth decreases the eastward
flow required to null the axial core angular momen-
tum anomaly, by about 10% in this example.

Ž .Differential rotation profile Eq. 6b is not only
Ž .arbitrary, it does not quite satisfy Eq. 3f . The shear

at the inner boundary proves quite small, but the
accompanying dissipation would not seem to aid
inner core solidification and core cooling. In con-
trast, the concentration of shear induced dissipation
into a thin upper boundary layer may aid core cool-
ing by steepening the temperature gradient across the
core–mantle interface; this speeds conductive heat
transport into, and perhaps helps drive convective
heat transport across, the deep mantle. Core motions
that pump magnetic energy into the field outside the
core and drive Ohmic dissipation in the mantle also
export energy from an overheated core, presumably a
core that cools, contracts and liberates gravitational
energy in accord with Hamilton’s, if not Fermat’s,
principle.

3. Variational method

If a particular core angular momentum anomaly is
stationary against perturbations in its underlying dif-
ferential rotation, then the planet might settle into
small oscillations about this state. Such a state could
be energetically accessible if it does not cause too
much dissipation D of magnetic and kinetic energy.

Ž .One might thus seek a state wherein i D L is
Ž .stationary against perturbations in v; ii there is no

angular momentum exchange between the outer core
Ž .and its bounding solids; and iii the dissipation in

the core is stationary and minimum. This nonmag-
netic, uniformly rotating state has evidently not yet

been attained, perhaps due to thermo-compositional
convective core cooling. A non-zero differential rota-
tion excited and maintained by smaller scale convec-
tive motions ought not interfere with such cooling by
excessive dissipation in the body of the core; how-
ever, a concentration of dissipation by the differen-
tial rotation into a thin core–mantle boundary layer
and in the overlying mantle may aide core cooling.

Ž . Ž .The importance attached to conditions i , ii ,
Ž .and iii above is thus reversed. The desired differen-

tial rotation profile has stationary dissipation, prefer-
ably concentrated near the outer boundary via condi-

Ž .tions 3c,d . Angular momentum exchange is dis-
couraged via inner–outer core locking conditions
Ž .3e,f ; the resistive mantle is left unlocked, not only
to increase dissipation near the core–mantle bound-
ary, but because core viscous torque on the mantle
turns out to be feeble and can be compensated by
magnetic or topographic, if not gravitational, torque
Ž .see, e.g., Voorhies, 1991 . With viscous boundary

Ž .layers resolved, condition 6a is not needed.
Ž . Ž .Stationarity of D v qlD L v is writtenz

� 4d DqlD L s0, 8Ž .Z

where d denotes perturbations in differential rotation
profile and l is a Lagrange multiplier. Only mag-
netic and viscous dissipation directly attributed to

Ž Ž ..spherical vortex Eq. 3a alone are included here.
The stationary dissipation solution described below
sets ls0; however, some interesting side cases use
non-zero l.

3.1. Magnetic and Õiscous dissipation

For a Newtonian fluid with rate of strain e ,i j

molecular kinematic shear viscosity n , and viscous
stress p equal to 2 rn e q2 rnd e r3, the vis-i j i j i j k k

Ž Ž ..cous dissipation for solenoidal flow Eq. 3a alone
is

D v s 2 rn e2 qe2 dVŽ . Ž .HHHn rf f r
CV

2 2 2s rn E v r sin udVŽ . 9aŽ .HHH r
CV

c 2X4s 8pr3 rn r v d r .Ž . Ž .H
0
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Ž .see, e.g., Chandrasekhar, 1961 . For a rigidly rotat-
ing inner core, the lower limit of integration in Eq.
Ž .9a can be reset to d. Viscous dissipation in a high
viscosity inner core can remain much less than in the
outer core, provided the magnitude of viscous stress
is similar in both regions.

ŽOhmic dissipation of Amperian current density
.J in the liquid metal core of electric conductivity s ,

D s sy1J 2dV , 9bŽ .Hs

is thought to dominate viscous dissipation. By Ohm’s
law for conductors moving in arbitrary magnetic
field B,

Jss Eqz=B , 10aŽ . Ž .
an electromotive force z=B equal and opposite to
electric field E causes no current and no Ohmic
dissipation. Motions inferred in the frozen-flux ap-
proximation, wherein Eqz=B is set to zero to
ensure finite J despite large s , therefore cause no
Ohmic dissipation.

We choose the solenoidal vector potential A ap-
Žpropriate to the Coulomb gauge Bs==A, Es

.y=FyE A . To isolate the current due to sphericalt
Ž Ž .. Ž .vortex Eq. 3a alone, denoted J v , the portion of

Ž . Ž . Ž .V v =B equal to E A v plus electrostatic =F vt

must be removed. Ohm’s law for the spherical vortex
is thus written:

J v sys v r sin u B qE F v qE A vŽ . Ž . Ž .r u r t r

10bŽ .
y1J v ss v r sin u B yr E F v yE A v .Ž . Ž . Ž .u r u t u

10cŽ .
Ž .Faraday induction E B s = = E A due tot t

frozen-flux geomagnetic drift v alone vanishes inB

a magnetic reference frame rotating at sidereal angu-
lar velocity V qv . In such a frame, the relativeo B

Ž .angular velocity of the fluid is v by Eq. 3b ;h

Ž . Ž .therefore, the E A v term in Eqs. 10b,c is elimi-t

nated by replacing v with v :h

J v sys v r sin u B qE F v 10dŽ . Ž . Ž .r h u r

y1J v ss v r sin u B yr E F v . 10eŽ . Ž . Ž .u h r u

Ž .The electrostatic term in Eqs. 10d,e must also
differentially rotate out, but with a conceivably dif-

ferent Ohmically nondissipative vortex denoted
) Ž . Ž ) .v r . Clearly J v must be zero, as must

Ž ) . Ž ) .E rJ v yE J v . For uniform s , the latterr u u r
Ž .condition applied to Eqs. 10d,e gives:

) 2 )s E v r sin u B qE v r sin u B s0,Ž .Ž .r r u u

11aŽ .

or, for solenoidal B,
X

) 2 )s v r sin u B yv rE B s0. 11bŽ . Ž .r f f

For v ) to be non-zero, shearing of the field must
balance advection of the non-axisymetric field.

A magnetically dissipative vortex v yv ) vio-h

Ž . Ž .lates Eqs. 11a and 11b , generates non-zero merid-
Ž Ž ..ional currents Eqs. 10a–e , and thus induces az-

Žimuthal field from meridional field the famous
. Ž . Ž .omega-effect . Substitution of Eqs. 10d and 10e ,

) Ž .after removing non-dissipative v , into Eq. 9b
yields:

2
) 2D v s s v yv rŽ . Ž .HHHs h

CV

= sin2u B2 qB2 dV . 12aŽ .Ž .r u

The definition of weighted mean meridional mag-
netic pressure,

P rŽ .m

p2p y1 2 2 3' 3r8p 2m B qB sin ududf ,Ž . Ž . Ž .H H r u
0 0

12bŽ .

Ž . Ž .and Eq. 3b allow Eq. 12a to be rewritten:

D vŽ .s

c 2y1 ) 4s 8pr3 2 P h vyv yv r d r ,Ž . Ž .H m B
0

12cŽ .

Ž .y1where h is magnetic diffusivity ms . If v equals
v qv ) in a magnetically locked inner core, theB

Ž .lower limit of integration in Eq. 12c can be reset to
d. Elsewhere, such balance minimizes Ohmic dissi-

Ž .pation due to the vortex alone. Note that Eq. 12c
excludes the inner product of other currents within

Ž .the core, notably sources of P , with J v .m
) Ž .When v on the left of Eq. 11b is replaced

with magnetically dissipative v yv ) , the resultingh
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term is not generally zero. A non-zero integral of the
square of this term is thus a sure sign of, if not
directly proportional to, Ohmic dissipation. The im-
balance between shear and advection of the magnetic
field by a dissipative vortex suggests a possible
alternative expression for Ohmic dissipation

X
) 2D v f s v yv r sin u BŽ . Ž .HHHs h r

CV

2
)y v yv rE B dV . 13Ž .Ž .h f f

If the advective term proportional to E B weref f

Ž . Ž .omitted, then Eq. 13 would resemble Eq. 9a with
an ‘effective viscosity rx ’ equal to s r 2B2. Withr

5 2 Ž .2sf3=10 Srm and B f 3.3 G averaged overr
< < 11r sc, rx is about 4=10 Pa s and x is about
4=107 m2rs. The latter value is about 14 orders of
magnitude larger than the molecular kinematic shear
viscosity of the liquid metal. This may help explain
differences, highlighted by Lumb and Aldridge
Ž .1991 , between ‘effective viscosities’ obtained pre-
suming a non-magnetic core and the viscosity of the
liquid metal. Appendix A shows how such oversim-

Ž .plification of D v destroys boundary layer struc-s

ture yet, with nonzero l, leads to seemingly reason-
able values for inner core eastward drift.

3.2. Variational calculus and illustratiÕe solution

Ž . Ž X.With D L from Eq. 5b and D v, v equal toz
Ž Ž ..the sum of magnetic dissipation Eq. 12c and

Ž Ž ..viscous dissipation Eq. 9a , the stationarity condi-
Ž .tion 8 is written:

c 2y1 )d 8pr3 2 P h vyv yvŽ . Ž .H m B½
d

2X 4qrn v qlrv r d r s0. 14Ž . Ž .5
The lower limit of integration has been reset to d for
a rigidly rotating, magnetically locked inner core.

Ž .Stationarity requires the integrand of Eq. 14 , de-
Ž X .noted f v, v ; r , to satisfy Euler’s equation, which

Ž X. X Žsets E frEv equal to E frEv see, e.g., Marion,
.1970 and reduces to:

XY X4v q ln rnr vŽ .
y1

)y2 P rnh vyv yv slr2Õ. 15Ž . Ž .Ž .m B

Ž .To simplify Eq. 15 , omit variations in r, Õ, and
h with radius and set l to zero. For such stationary
dissipation,

v
Y q 4rr v

XŽ .
y1

)y2 P rnh vyv yv s0. 16Ž . Ž .Ž .m B

Ž .Eq. 16 also describes a balance between azimuthal
Ž .Lorentz and viscous forces see Appendix B . The

Ž .general solution to Eq. 16 is the sum of particular
solution v and homogeneous solution j . Particularp

solution v sv qv ) satisfiesp B

v
Y q 4rr v

X s0 17aŽ . Ž .p p

and is
3

v r sv qB crr , 17bŽ . Ž . Ž .p o

where v and B are integration constants. Primaryo
Ž Ž ..spherical Couette flow Eq. 17b also describes a

Žnonmagnetic case Cartwright et al., 1996; Bills,
. Ž .1998 ; nonzero l adds a quadratic to v r . Homo-p

geneous solution j satisfies
y1Y X

j q 4rr j y2 P rnh j s 0. 18aŽ . Ž . Ž .m

Ž .The functional form of P r is needed to solve Eq.m
Ž .18a . The detailed form does not matter much for

Ž .the problem at hand, provided P r does not varym

by more than eight orders of magnitude across the
2Ž .y1outer core, because 2 P r rnh is enormous andm

j is therefore small except in thin boundary layers.
If the meridional magnetic field originates in the

Ž .core, then positive P r should tend to increasem

with depth below c, perhaps reaching a maximum
and then falling to modest values. The illustrative

Ž . 2 2case simply takes P r to be Kc rr , so solutionsm
Ž .to Eq. 18a are of power law form

p q
jsC rrc qD rrd , 18bŽ . Ž . Ž .
where

1r22p s 1r2 y3q 9q 8 Kc rrnhŽ . Ž .½ 5
1r22 7f 2 Kc rrnh f2=10 .Ž .

1r22q s 1r2 y3y 9y 8 Kc rrnh fypŽ . Ž .½ 5
18cŽ .
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Ž .The value of p in Eq. 18c follows from: a 5 G
meridional field at radius cs3.48 Mm, hence Kf
0.1 Pa; rf104 kgrm3; the molecular kinematic
shear viscosity n of the molten metal, which is

y7 2 Žwell-known to be about 3=10 m rs Poirer,
. 51988 ; and sf3=10 Srm as above. Because p

Ž .is so large, the first and second terms in Eq. 18b ,
Ž .respectively, dominate the core–mantle outer and

Ž .inner–outer core inner boundary layers. The outer
< X <boundary layer scale height jrj is dscrpf20

Ž .cm about 2.5 times the Ekman depth . The inner
Ž .w xy1boundary layer scale height is ´d . If P r rnhm

were decreased by eight orders of magnitude, d

would increase to 2 km, which remains thin com-
pared with 2.2 Mm of molten iron. The illustrative
case is therefore robust.

Ž .The general solution of Eq. 16 is the sum of
Ž . Ž .Eqs. 17b and 18b :

p q3
v r sv qB crr qC rrc qD rrd .Ž . Ž . Ž . Ž .o

19Ž .

Ž .Spherical vortex 19 exerts no net azimuthal force
density in the outer core in so far as viscous diffu-
sion of its momentum balances Lorentz drag.

3.3. Boundary conditions for magnetically locked
inner core

Ž . Ž .The four parameters v , B, C, D in Eq. 19o

are precisely those needed to match boundary condi-
Ž . Ž .tions 3c–f . The contribution to v c from

Ž .q Ž . Ž 7.D crd sD crd )) qfD´ )) 2=10 proves
negligibly small, so the no-slip core–mantle inter-

Ž . Ž .face condition 3d on Eq. 19 implies:

v syByC. 20aŽ .o

Ž . yWestward drift condition 3c is applied at c fcy
wŽ . x p y510d . To an accuracy of cy10d rc f10 , this

gives:

v cy sv qBsyC. 20bŽ . Ž .o

Similarly neglecting the small contribution from C´ p

Ž .to v d ,

3
v d sB crd y1 yCqD. 20cŽ . Ž . Ž .

The top of the inner boundary layer is taken to be
dqsdq10´d , so

3qv d fB crd y1 yC. 20dŽ . Ž . Ž .
Ž . Ž .By subtracting Eq. 20c from Eq. 20d , we see that

the jump in v across the inner boundary layer is
< < XŽ .yD. Thus, D is small when v d is zero, as

Ž .required by condition 3f . The latter is intended to
reduce dissipation in the inner–outer core transition
region that does not immediately aid core cooling.
Because Cp´ p -C, this condition gives

4 py1X
v d sy 3Brc crd q Cprc drcŽ . Ž . Ž . Ž . Ž .

q DqrdŽ .
4s Dqrd y3B crd s0, 20eŽ . Ž . Ž .

hence
3y1Ds3q B crd . 20fŽ . Ž .

7 Ž . < <Recalling qfy2=10 , Eq. 20f confirms D <

< < Ž . Ž . Ž .B . Substitution of Eqs. 20a , 20b and 20f into
Ž .Eq. 19 gives:

pyv r sv c 1y rrcŽ . Ž . Ž .
3qB crr y1Ž .

q3q 3rq crd rrd . 21Ž . Ž . Ž . Ž .
Ž y.To relate B to v c , and thus assign a numeri-

Ž . Ž . Ž .cal value to v d via Eqs. 3c and 20d , it is
Ž . Žassumed that D L in Eq. 5b is zero. Alternatively,z

Ž .D L might be calculated from a value for v d orz
.constrained via non-zero l . With r already treated

as uniform and omitting the tiny contribution to D Lz

from the boundary layers, this requires:

0sv d d5r5Ž .
yc 3y 4q v c qB crr y1 r d r .Ž . Ž .H ½ 5

qd

22aŽ .
Ž . Ž y.The elementary integration, with v d being v c

wŽ .3 x Ž . Ž .qB crd y1 from Eqs. 20b and 20d gives
y1y 2w xBsy2v c 3y´ . 22bŽ . Ž .

Ž . Ž .Substitution of Eq. 22b into Eq. 21 yields the
solution

y1py 2v r sv c 1y rrc q2 3y´Ž . Ž . Ž . Ž .½
=

q3 3crr y1q 3rq crd rrd .Ž . Ž . Ž . Ž . 5
22cŽ .
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Ž . Ž y.Clearly, Eq. 22c depends wholly upon v c . If
Ž y. Ž .v c were presumed to be zero, then v r would

< Ž y. <vanish; if v c were presumed to vastly exceed
< Ž y. < Ž .v c , then v r would be quite large. Geomag-B

netic inversions indicate an intermediate case wherein
Ž y. Ž y.v c is a large fraction of v c .B

Ž . Ž .By Eq. 22c , or by combining Eq. 22b with
Ž . Ž .Eqs. 20d and 20b ,

32 ´ y1Ž .
yv d sv c 1q 23aŽ . Ž . Ž .3 53´ y´

y w xsyv c 13.31 . 23bŽ . Ž .
Ž y. Ž .In the diffusive extreme, v c and v d would be

Ž y.zero. In the frozen-flux extreme, v c would be
Ž .v and, using v from Eq. 3b ,B B

y w xv d syv c 13.31 s1.548ryear. 23cŽ . Ž . Ž .B

Ž .Eq. 23c offers a soft upper bound on inner core
eastward drift.

The shear across the core–mantle boundary layer
in the illustrative example is:

v
X c spCrcy3Brcfyv cy rd . 24Ž . Ž . Ž .

Ž .The feeble viscous torque exerted by Eq. 24 on the
mantle must be compensated by magnetic torques on
the resistive mantle or magnetically permeable crust;

Ž y.however, even with the frozen-flux value for v c ,
a very weak toroidal magnetic field at the core–man-
tle interface, albeit of magnitude no less than 8 nT,

Ž .could suffice Voorhies, 1991 . If it were not com-
pensated, the resulting secular increase in the length
of the day of roughly 5.5 msrdecade, or less than 1
hr4.5 G year, would seem far smaller than other
effects omitted above.

Both viscous and magnetic dissipation due solely
Ž .to spherical vortex 22c are concentrated in the

core–mantle boundary layer and sum to a tiny frac-
Žtion of the geothermal flux. Viscous dissipation Eq.

Ž ..9a in the core–mantle boundary layer due to vor-
Ž . Ž 4tex 22c alone would be about 4p c rnr

.w Ž y.x2 Ž3d v c , or 40 kW. Magnetic dissipation Eq.
Ž ..12c due to this vortex alone is due solely to the

Ž Ž ..homogeneous solution Eq. 18b . For the form of
P adopted above, the portion of this dissipationm

occurring in the core-mantle boundary layer would
Ž 4 .w Ž y.x2be about 4p c Kmsr3d v c , or about 0.5

MW. These values seem very small; however, if

other motions of the outer core dissipated magnetic
and kinetic energy at the same rate per unit volume,
then total dissipation in the outer core would be
about 3 TW. Dissipation of this magnitude might
arise if the other motions continually entrain and mix
thin boundary layers into the body of the outer core
or, perhaps more simply, have a very small scale in
one direction.

4. Summary

The idea that geomagnetic westward drift indi-
cates a slight convective leveling of the momentum
gradient within Earth’s core was pursued in search of
a differentially rotating mean state, upon which vari-
ous oscillations and secular effects might be super-
imposed. The variational calculus of stationary dissi-
pation applied to a spherical vortex within Earth’s
core leads to an inhomogeneous second order differ-
ential equation for the differential rotation profile
Ž .v r . For a magnetic, liquid metallic outer core

Ž 2 .P r rrnh41 , the bulk of the vortex is separatedm

from the bounding solids by 20 cm thin magneto-
viscous boundary layers.

Because part of the motion may induce no electric
current, hence no Ohmic dissipation, four boundary
conditions are required instead of two. The four

Ž .conditions imposed on this form are: i no-slip at
Ž .the core–mantle interface, ii geomagnetically esti-

mated bulk westward flow of up to 0.128ryear at the
Ž .base of the thin core–mantle sub-layer, iii no-slip

Ž .at the inner–outer core interface, and iv the hydro-
dynamically stress-free inner core boundary condi-
tion appropriate to a magnetically locked inner core.
To compute the eastward drift of such an inner core
from geomagnetic westward drift, it is assumed that
the axial core angular momentum anomaly is zero.

The eastward drift of the inner core resulting from
this analytic exercise is at most 1.58ryear. This
value is within the 0–38ryear range predicted by
some numerical simulations and inferred from seis-
mological data. It is remarkable that a simple, kine-
matic spherical vortex model featuring liquid metal-
lic viscosity should show any similarity to either.
Values temporarily exceeding 1.58ryear might be
explicable in terms of decadal oscillations. Provided
the axial angular momentum anomaly of the core is
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not too large, there appears to be no serious conflict
between geomagnetically inferred westward drift at
the top of the core, eastward drift at depth, and
seismologically inferred eastward drift of the inner
core. The general agreement by no means reduces
the importance of inner–outer core–mantle oscilla-
tions, differential precession, differential tidal de-
spin, or differential spin up due to inner core solidifi-
cation.
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Appendix A

If E B were omitted and heterogeneous s r 2B2
f f r

parameterized as a laterally homogeneous ‘effective
Ž . Ž . Ž .viscosity’ r r x r , then Eq. 13 would reduce to:

c 2X4D f 8pr3 rx r v d r . A1Ž . Ž . Ž .Hs
0

Ž . Ž .The similarity between Eq. A1 and Eq. 9a
provokes comment on dynamic shear viscosity rn as
a parameterization of momentum transport by elec-

Ž .tromagnetic molecular interactions ‘collisions’ . Hy-
Ž .drodynamic stress P s ypd q p may bei j i j i j

viewed as a macroscopic average over intermolecu-
Ž . ² :lar electromagnetic Maxwell stress T . The ref-i j

erence stress T o is due to a tangle of fluctuatingi j
Ž .intermolecular fields e, b originating in the

Žmolecules. A macroscopic average e.g., over a cubic
.millimeter and a millisecond amounts to an isotropic

² o:cohesive equilibrium T sypd . Applied macro-i j i j

scopic strain rate v
X rsinu shears the intermolecular

field within a liquid, arguably inducing a contribu-
tion to b equal to v

X rsinuk b , where k dependsf r

upon details of the interactions. The contribution to
² : ² : Ž .² 2: XT is b b r2m , or rsinur2m k b v . Inrf r f o o r

² :the absence of macroscopic fields, b remains zero;
moreover, terms analogous to those omitted in going

Ž . Ž . ²Ž .2:from Eq. 13 to Eq. A1 , specifically E bf f

² : ² :and b E b , would seem as negligible as E br f f f f

when the applied strain rate is uniform over the
² :averaging four-volume. If the contribution to Trf

is identified with p , then rn might be identifiedi j
² 2:with k b r4m . The fact remains that interactionsr o

establishing viscosity involve intermolecular colli-
sions, while macroscopic B is due to Amperian
currents regulated by conduction electron collisions;
therefore, k differs from s and n differs from x .
Large values of core ‘effective viscosity’ have little
or nothing to do with viscosity, but may have much
to do with Lorentz forces and Ohmic dissipation.

Ž . Ž .If D v were treated as the sum of Eqs. A1 and
Ž . Ž .9a , then Eq. 8 would amount to:

c 2X 40fd 8pr3 rx v qlr r v r r d rŽ . Ž . Ž . Ž .H o
0

A2Ž .

because n<x . Stationarity would require the inte-
Ž .grand of Eq. A2 to satisfy Euler’s equation

XY X4v q ln rx r v ylr2 xs0. A3Ž .Ž .
Ž .The first and second integrals of Eq. A3 are

Ž . Ž .straightforward when r r and x r are, respec-
tively, approximated by uniform constants. The re-
sult is written

v r sv y C r3rx ry3 q lr20x r 2 , A4Ž . Ž . Ž . Ž .1 1

where C and v are the two constants of the two1 1
Ž .integrations. In Eq. A4 , primary spherical Couette

flow is the homogeneous solution and the parabolic
term on the far right is the particular solution for

Ž .non-zero l. The contrast with Eq. 19 is remark-
Ž .able; moreover, Eq. A4 shows no sign of the

boundary layers and, even with non-zero l, can sate
but three of four boundary conditions.

XŽ y.Stress-free CMB Õs. ICB: If v c were zero,
Ž .then Eq. A4 would imply:

lrx sy10 C rrx cy5 . A5aŽ . Ž . Ž .1

Ž . Ž . Ž .When Eqs. A4 and A5a are used in Eq. 5b and
D L is set to zero, again for uniform density, onez

obtains

C rrx sv c3r5Q, A5bŽ . Ž .1 1
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where Q depends only on ´ and is about 0.2259. It
has also been shown that

v sv cy 6Qr 6Qy1 . A5cŽ . Ž . Ž .1

Ž . Ž .Substitution of Eqs. A5a–c into Eq. A4 and
evaluation of the result at inner radius d yields

yv d sv c 6Qr 6Qy1Ž . Ž . Ž .

=
y1y1 3 21y 5Q 3´ q´ r2Ž . Ž .½ 5

syv cy 22.68 s2.628ryear, A5dŽ . Ž . Ž .
where the last step uses the frozen-flux value for
Ž y. Ž .v c from Eq. 3c . One also obtains an v of1

y2.44=10y10 rad sy1 and Crrxsy9.1=109

m3rs.
Ž .The foregoing oversimplification of D v leavess

some shear at the inner core boundary; indeed, from
Ž . Ž .Eqs. A4 and A5a–d , it follows that

y1X y1 y4w xv d sv c c 6r5 6Qy1 3´ y´Ž . Ž . Ž . Ž .
s224.2 cy1v cy sy28.3v d rd. A6Ž . Ž . Ž .

Such shear could curl field lines threading the inner
core and generate non-irrotational currents, magnetic
diffusion, Ohmic dissipation that might inhibit inner
core solidification, and restoring Lorentz torques. If
it were not compensated by other torques, the vis-
cous stress would tend to spin down the inner core
and spin up the outer core, albeit extremely slowly.

If the hydrodynamic stress-free condition were
instead applied at the inner boundary, then a slower

Ž y.inner core eastward drift of y1.847v c , or about
0.218ryear, would result. The non-zero shear on the
mainstream below the core–mantle boundary,

XŽ y. Ž y.v c , would be about 7.08 v c rc. If uncom-
pensated, this would tend to spin up the core and
spin down the mantle.

Appendix B. Force balances

The azimuthal Lorentz force density implied by
Ž . Ž . Ž . ŽEqs. 10a–e is J v B yJ v B , is ys vyvr u u r B

) . Ž 2 2 .v rsinu B qB , and is equivalent to magneticr u

Ž ) .friction yC V yV yV with drag coefficientf f B

Ž 2 2 .C 's B qB . The azimuthal viscous force den-f r u

sity from the divergence of p is, assuming uniformrf

Ž Y X. y3Ž 4 X. X
r Õ, r Õsinu rv q4v , or rnr r v . There is
no azimuthal Coriolis force on motions Õ ; pressuref

forces are scaloidal; and buoyancy forces are mainly
radial. A balance between Lorentz drag and viscous
diffusion would have

rn sin u rv
Y q4v

X ys vyv yv ) r sin uŽ . Ž .B

² 2 2:= B qB s0. B1Ž .r u

Ž 2 2 .Only the azimuthal mean value of B qB , de-r u

Ž .noted by angle brackets, appears in Eq. B1 because
Ž .other currents JyJ v , and other motions zy

Ž .V v , in the core are excluded from the analysis of
Ž .the vortex alone. When Eq. B1 is multiplied by

sin2ududf and integrated over a sphere, the result is
Ž . Ž Ž ..identical to Eq. 16 . Spherical vortex Eq. 19 is

thus ‘force-free’ in the limited sense that the viscous
diffusion of its momentum is balanced by the Lorentz
force caused by the current it generates from the
ambient field.
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